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Ch. 8 Quantum Mechanics

References: 

1. Young & Freedman, “University Physics”, 13th ed. Ch. 40

2. Halliday et al., “Principles of Physics”, 9th ed. Ch. 39
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8.1 Particle in a Box

U (x)={0     for 0≤x≤L
∞    for x<0  and x>L

−
 ℏ2

2 m
d 2ψ(x)
  dx2 +U (x)ψ(x)=E ψ(x)

We want to solve the Schrödinger equation

with the potential energy

(infinite square well)
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● Wave Function

The particle is confined inside the box => (x)=0 outside the box

1. (x) must be continuous  

       => Boundary conditions 

2. d/dx must also be continuous 
   (except at the points where U = )

ψ(0)=ψ(L)=0
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Inside the box (U = 0): −
 ℏ

2

2 m
d 2ψ(x)

  dx2 =E ψ(x)

ψ(x)=Aeikx+B e−ikxGeneral solution: (k=√2m E /ℏ)

Impose B.C.  => 
ψ(0)=A+B=0        =>  B=−A

ψ(L)=AeikL
+B e−ikL

=0

A(eikL−e−ikL)=0

2 Asin(kL)=0

=> 
(assume E > 0 )

ei θ=cosθ+i sinθ    ;    sinθ=
ei θ

−e−i θ

   2 i
Recall: 
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In order to have non-trivial solution (A0): 

sin(kL)=0     =>   k L=nπ    (n=1,2,3. ..)

k=
nπ
L

   and   λ=
2π
k

=
2 L
 n

=> 

ψn(x)=Aeik x
−Ae−ikx

       =C sin (kx)=C sin(nπ x
 L )

Wave function inside the box: 

(C≡2 i A)

Note: If E < 0, k becomes imaginary (k =i)

ψ=A e−α x−A e+α x

ψ(L)=0    =>   A=0B.C.:
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The possible energy levels are given by E=
p2

2m
=
(ℏ k)2

 2 m

k=nπ
L

=> En=
n2π2ℏ2

2 m L2     (n=1,2,3. ..)

Note:  Zero energy (n = 0) is not allowed because the wave function 
           would be zero.

● Energy Levels



  8



  9

● Probability and Normalization

Wave function: ψn(x)={C sin(nπ x
  L )       for 0≤x≤L

0                        for x<0  and x>L

The particle must be somewhere in space:
   

∫
−∞

+∞

∣ψ(x)∣
2
dx=1=> (Normalization condition)

C2∫
0

L

sin2
(nπ x /L)dx=1=> 



  10

∫
0

L

sin2
(nπ x /L)dx=

1
2∫0

L

[1−cos(2 nπ x /L)]dx

                            =
L
2

Note: 

C2(L /2)=1=> (C=√2 /L)

ψn(x)=√2
L

sin(nπ x
 L )      (n=1,2,3. ..) (Normalized 

 wave functions)
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Recall: 
∣ψ(x)∣2 dx= Probability of finding the particle in a small 

interval dx around the point x

Max = Highest probability to find the
           particle there
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● Indeterminacy

In quantum physics, we cannot predict the outcome with certainty!
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● Time Dependence

Recall: The time-dependent wave function for a stationary state:

Ψ( x , t )=ψ(x)e−i Et /ℏ

=> For a particle in a box

Ψn(x , t )=√2
L

sin(nπ x
 L )e−i E n t / ℏ

      (n=1,2,3. ..)

∣Ψn(x , t)∣
2
=∣ψn(x)∣

2

Note: The probability density does not depend on time
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● Expectation Values

< x >=∫
−∞

∞

x∣Ψ∣2 dx

For a normalized wave function (x, t), we define 

(Expectation value 
 of the position of 
 a particle)

In general, we define the expectation value of any function F(x): 

< F (x)>=∫
−∞

∞

F (x)∣Ψ∣2 dx
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8.2 Potential Wells

U (x)={0      for 0≤x≤L
U 0    for x<0  and x>L

Example: Finite square well

A potential well is a potential-energy function U(x) that has a 
minimum. 
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● Bound States of a Square-Well Potential

Inside the well: U(x) = 0 

d 2
ψ

d x2 =−k 2ψ=> 

ψ(x)=Acos k x+Bsin kx        for 0≤x≤L

(k=√2 mE /ℏ)

Outside the well: U(x) = U
0

d 2
ψ

d x2 =α2ψ (α=√2 m(U 0−E)/ ℏ)

ψ(x)=C eα x+D e−α x
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Note: 

1. the wave function should be finite everywhere

ψ(x)={
C eα x                             for x<0
Acos kx+Bsin kx          for 0≤x≤L

D e−α x                           for x>L

=> 

2.  and d/dx should be continuous

At  x = 0      => 
  C=A
αC=k B

At  x = L     =>          Acos kL+B sin kL=D e−α L

−k Asin kL+k Bcos kL=−α D e−α L

(Eq.1)
(Eq.2)

(Eq.3)
(Eq.4)
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(Eq.1) & (Eq.2)   =>  B=α
k

C=α
k

A

With (Eq.3) & (Eq.4)  => A [2α k+(α
2
−k 2

) tan kL ]=0

We must have  A  0.  
(otherwise  A = B = C = D = 0     =>     = 0  for all x)

The allowed energies (E) are determined by: 

2α k+(α
2
−k 2

) tan kL=0

α=√2 m(U 0−E)/ ℏ   ,  k=√2m E /ℏwhere

Note: This equation can be solved numerically.
         (we will not discuss the details) 
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Example: A finite square well with U
0
 = 6 E

1-IDW
 .  

               (There are 3 bound states)

E1−IDW=
 π

2
ℏ

2

2 m L2
Ground-state energy for the infinity deep well:
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Probability distribution function

Classically forbidden
region

Classically forbidden
region
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8.3 Potential Barriers and Tunneling

A potential barrier is a potential-energy function U(x) that has a 
maximum.

Quantum mechanics 
=> tunneling is possible
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● Tunneling Through a Rectangular Barrier

In regions I and III :

             In region II: 

d 2ψ

d x2 =−k 2ψ (k=√2mE /ℏ)

d 2
ψ

d x2 =α2ψ (α=√2m(U 0−E)/ℏ)

Incoming wave

Reflected wave

Transmitted wave
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In region I:  ψI=Aei k x
+B e−ikx

   =ψin+ψref

Note: ψin e−iω t
=Aei (kx−ω t)

corresponds an incoming wave (particle) traveling from left to
right

In region II:   ψII=C eα x+D e−α x

In region III:  There can only be a transmitted wave

ψIII=F eikx
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Boundary conditions:  and d/dx continuous at x=0 and L

ψI=ψII    ,   
d ψI

d x
=

d ψII

d xAt x = 0:

At x = L:  
ψII=ψIII    ,   

d ψII

d x
=

d ψIII

 d x

The wave amplitudes are determined by these conditions.  

Main conclusion:  
The probability T that the particle gets through the barrier is given 
approximately by  (when T << 1)

T=G e−2α L

where G=16
E
U 0 (1−

E
U 0 )    ;    α=√2 m(U 0−E )/ℏ
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● Applications of Tunneling

Scanning tunneling microscope: 

L ~ 1 nm 

This colored STM image shows ''quantum wire'':
thin strip, just 10 atoms wide, of a conductive
rare-earth silicide atop a silicon surface.
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Alpha decay: 

Alpha particle = helium nucleus 
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8.4 The Harmonic Oscillator

In Newtonian mechanics

m
d 2 x

dt2 =F=−k ' x

x(t)=Acos(ω t+ϕ)

ω=√k '

m

Oscillation frequency: 

General solution:
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● Quantum Harmonic Oscillator

Schrödinger equation: d 2
ψ(x)

  dx2 +
2 m

 ℏ
2 (E−

1
2

k ' x2)ψ(x)=0

(We will only give a qualitative discussion)

Define new variables: y=√mω
 ℏ

x     ,     ϵ=
2 E
ℏω

d 2ψ

d y2 +(ϵ− y2)ψ=0=> 

Boundary conditions: 

ψ→0    as  ∣y∣→∞

(Eq.1)
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We state (without proof) that the mathematical properties 
of (Eq.1) and the boundary conditions require that:   

ϵ=2n+1       (n=0,1,2,. ..)

ϵ=
2 E
ℏω

En=(n+
1
2 )ℏω      (n=0,1,2,. ..)

Energy levels
of harmonic
oscillator  

=>

Ground state energy ( n = 0 ):   

E0=
1
2
ℏω

(also called zero-point energy)

Note: (Eq.1) can be solved exactly. Each wave function 
n
 is

          related to the so-called Hermite polynomial H
n
(y). 
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Example: The ground state wave function is 

ψ(x)=C e−x2/2 b2

      (b=√ℏ/mω)

The normalization constant C is determined by 

∫
−∞

∞

∣ψ(x)∣
2
dx=1

Note: Gaussian integral ∫
−∞

∞

e−a2 x2

dx=√π
 a
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Note: The spacing between any two adjacent energy levels is 

        

Δ E=ℏω
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Example: The potential energy function describing the 
                 interaction of two atoms in a diatomic molecule
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8.5 Three-Dimensional Problems

One-dimensional Schrödinger equation: 

−
 ℏ2

2 m
d 2ψ(x)
  dx2 +U (x)ψ(x)=E ψ(x)

For a free particle (U = 0) ψ=A ei k x

−
 ℏ

2

2 m
d 2

ψ(x)

  dx2 =−
 ℏ

2

2 m
(A)(ik )2 eikx=

ℏ
2 k 2

2m
ψ=

px
2

2 m
ψNote: 

K.E. 

K ψ+U ψ=E ψ

Schrödinger equation 
=>

(Optional)
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In three dimensions: K=
px

2+ p y
2+ pz

2

     2 m

3D Schrödinger equation:

−
 ℏ

2

2 m ( ∂
2

∂ x2 +
 ∂

2

∂ y2 +
 ∂

2

∂ z2 )ψ+U ψ=E ψ

where U and  are functions of (x,y,z).

Define: ∇ 2=
 ∂

2

∂ x2 +
 ∂

2

∂ y2 +
 ∂

2

∂ z2

   (Laplacian operator)
 in Cartesian coordinates

−
 ℏ2

2 m
∇ 2ψ+U ψ=E ψ
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In many practical problems, it is convenient to use spherical 
coordinates (r, , ): 

x=r sinθcosϕ
y=r sinθsinϕ
z=r cosθ

=>  Schrödinger equation in spherical coordinates: 

−
 ℏ2

2 m {1r ∂2

∂ r2 (r ψ)+
    1

r 2 sinθ [
 ∂
∂θ (sinθ

∂ ψ
∂θ )+

  1
sin θ

∂
2
ψ

∂ϕ2 ]}+U ψ=E ψ

(No need to memorize!)
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