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8.1 Particle in a Box

We want to solve the Schrodinger equation

R dy(x) _
o e TUER=Ewlx) )

with the potential energy
'U[T]
0 for 0<x=<L

Ulx)= =0
o for x<0 and x> L

-

0 I
(infinite square well)



 Wave Function
The particle is confined inside the box => y/(x)=0 outside the box
1. ¥(x) must be continuous

=> Boundary conditions y(0)=y(L)=0

2. diyldx must also be continuous
(except at the points where U = )



B B’ d’P(x)
2m  dx’

Inside the box (U = 0): =Ey(x)

General solution: (x)=Ae™+Be ™  (k=V2mE/h)

Y(0)=4+B=0 => B=—4
Impose B.C. =>

Y(L)=Ae™+Be ™ =0

- A (eikL_e—ikL>:O
(assume £>0)
2 Asin(kL)=0

i0 —i0
e —e€

Recall: ¢"=cos0O+isin® sIn 6=

9
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In order to have non-trivial solution (4+0):

sin(kL)=0 => kL=nn (n=12,3...)

nm

s k:L_ and }\:2n:2L

k n

Wave function inside the box:

P (x)=Ade" —A4e ™

=Csin(kx)=Csin

nLT[x) (C=2iA)

Note: If £ <0, k becomes imaginary (k =i)
w:Ae—ocx_Ae-l—ocx
B.C.. ¢(L)=0 => 4=0




 Energy Levels

2 2
The possible energy levels are given by E=2 :<hk)
2m  2m

2_2472

=" S I n - h

L n_2mL2

(n=1,2,3...)

Note: Zero energy (n = 0) is not allowed because the wave function
would be zero.
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* Probability and Normalization

The particle must be somewhere in space:

=> f g (x | dx=1 (Normalization condition)

(

|

. | nTtX
<x<
Wave function: wn(x) Csm( I ) for 0=x=<7L

l0 for x<0 and x> L

L
=> szsinz(nrtx/L)dx=1
0



L
Note: fsm nnx/L)d ;—fl cos(2nmx/L)|dx
0
_L
2

wn(x)=\gsin(”£fx) (n=1,23...) (Normalized

wave functions)
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Recall:
|1|)(x)|2dx: Probability of finding the particle in a small

iInterval dx around the point x

(@)  ¥(x) ®) |y
= 3 P e el
n = 2T e e e
n=1@g~<——- 72 ————————
X
0 L 0 L

Max = Highest probability to find the

particle there .



e Indeterminacy

In quantum physics, we cannot predict the outcome with certainty!

/X_,-ff H"--.__x\l‘\\
{___ God does not play dice! S
2 — /' Einstein, stop telling
/ . God what to do!
4 s/ _/"f;
y
4
Niels Bohr
(1885-1962)

Albert Einstein
(1879-1955) 12



« Time Dependence

Recall: The time-dependent wave function for a stationary state:

‘P(x, t):w(x)e—iEt/h

=> For a particle in a box
¥ (x t)z\/zsin LIEE PRl (n=1,2,3...)
Ax, ; 7 2,3, ..

Note: The probability density does not depend on time

W, (x, o) =[w, (x)]
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 Expectation Values

For a normalized wave function ¥(x, ¢), we define

<x>=f x W dx

(Expectation value
of the position of
a particle)

In general, we define the expectation value of any function F(x):
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8.2 Potential Wells

A potential well is a potential-energy function U(x) that has a
minimum.

Example: Finite square well U(x)

A

p 7 "0 N

U(X):<O for 0<x<L A
U, for x<0 and x> L

\
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 Bound States of a Square-Well Potential

Inside the well: U(x) =0

Ay
732 ==k (k=V2mE/IHh)

=>

Y(x)=A4cosk x+ Bsin kx for 0<x<L

Outside the well: U(x) = U

0

=a Y (a=v2m(U,—E)/Hh)
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Note:

1. the wave function should be finite everywhere

f
Ce™” for x<O

=> 1|)(X)=< Acos kx+ Bsin kx for 0<x=<L
\De_(” for x> L

2. Y and dy/dx should be continuous

At y=0 => C=4 (Eq.1)

aC=kB (Eq.2)

At x=L => AcoskL+BsinkL=De *" (Eq.3)
—k AsinkL+k BcoskL=—o De “* (Eq.4)
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(Eq.1) & (Eq.2) => B=%C=%A
With (Eq.3) & (Eq.4) =>  A|200k+(o’— k) tankL|=0

We must have 4 + 0.
(otherwise A=B=C=D=0 => y =0 forallx)

The allowed energies (£) are determined by:

ak+(o’—k*)tankL=0

where o=v2m(U,—E)lk , k=vV2mE/h

Note: This equation can be solved numerically.
(we will not discuss the details)
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Example: A finite square well with U =6 £
(There are 3 bound states)

1-IDW

(a) (x) (b) U
Continuum
— Up = 6 pw
n=3 By = Si08E: rom
\ = 0.848U,
RS Ey = 243E py
\ h = 0.405U,
’ Ly pw
=] E[ = 0'625E|—|DW
X =0.104U,
0 i
242
7

Ground-state energy for the infinity deep well: E_pw=——
2mL

19



Probability distribution function

()]

n=23

Classically forbidden
region

Classically forbidden
region
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8.3 Potential Barriers and Tunneling

A potential barrier is a potential-energy function U(x) that has a

maximum.
U(x)

1)

E,
Quantum mechanics
=> tunneling is possible
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e Tunneling Through a Rectangular Barrier
U(x)

Reflected wave
Ll) ref E B me R oo

-

L s & Yen EEE BN EE) O

Transmitted wave
Ny — 0 WYiran

Incoming wave

X
0 L
d2
In regions I and III : . ?z—kzw (k=v2mE|/h)
X

: dzw
In region II: — = (a=v2m(U,~E)I#f) »



ikx —ikx

In region I Y, =Ae""+Be
:win_l_wref

Note: . e "“'=Ae™ "

corresponds an incoming wave (particle) traveling from left to
right

In region /I P, =Ce* " +De ™
In region //I: There can only be a transmitted wave

Tox
Y= Fe
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Boundary conditions: i and dy/dx continuous at x=0 and L

dwl dll”H
Atx:O: wI:wH ’ dx :dx

. dwn_dwm
At x =L wn_wm *d x _a’x

The wave amplitudes are determined by these conditions.

Main conclusion:

The probability T that the particle gets through the barrier is given
approximately by (when 7'<< 1)

T:Ge—ZocL

where G= 16E—

Ug

)
1 -2
Uy

- o=v2m(U,—E)I#
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The wave function is exponential
within the barrier (0 = x = L) ...,

N
I M
']

~...and ?inusc}idal outside the barrier.
4A A

L]
L]

The function and its derivative (slope) are continuous at x = 0 and
x = L so that the sinusoidal and exponential functions join smoothly.

25



» Applications of Tunneling
Scanning tunneling microscope:

Surface \
electrons |
3L

WD

Specimen

This colored STM image shows "quantum wire":
thin strip, just 10 atoms wide, of a conductive

L~1nm rare-earth silicide atop a silicon surface. y



Alpha decay:

Inside the nucleus (r = R).

an alpha particle encounters
" a square-well potential due

to the strong nuclear force.

Nucleus
U(r)

]

.

i ——— — —
L]

Outside the nucleus (r > R), an alpha
particle experiences a 1/r potential due
to electrostatic repulsion.

Alpha particle = helium nucleus
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8.4 The Harmonic Oscillator

In Newtonian mechanics U(x)
) | Ulo) = L7y
md 2x=F=—k X i bl
dt
E

General solution:
x(t)=Acos(wt+¢)

Oscillation frequency:
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* Quantum Harmonic Oscillator
(We will only give a qualitative discussion)

. d*y(x) 2m 1,
Schrodinger equation: - + - E_Ek x2)w(x)
- o mo _2E
Define new variables: )= poX s €S
2
=> ‘ithE—y5w=ﬂ (Eq.1)

Boundary conditions:
Pp—0 as |y|-o
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We state (without proof) that the mathematical properties
of (Eq.1) and the boundary conditions require that:

e=2n+1 (n=0,1,2,...)

Energy levels
Ao (n=0,1,2,...)  of harmonic
oscillator

D | —

n—+

Ground state energy (7 =0 ):

Eozéhw

(also called zero-point energy)

Note: (Eq.1) can be solved exactly. Each wave function y is

related to the so-called Hermite polynomial H (). !



Example: The ground state wave function is

w(x)zCe_x2/2b2 (b=vVhImw)

The normalization constant C is determined by

o0

| ho(x)Fax=1

—Q0

0
. . —Cl2X2 - T[
Note: Gaussian integral e dx-;
—00
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Note: The spacing between any two adjacent energy levels is
AE=hw

U(x)

AE =

33



Example: The potential energy function describing the
Interaction of two atoms in a diatomic molecule

U(r) — U

— U (approximation)

O

When r 1s near r, the potential-energy curve 1s
approximately parabolic (as shown by the red
curve) and the system behaves approximately

like a harmonic oscillator. 34



8.5 Three-Dimensional Problems

One-dimensional Schrddinger equation: (Optional)
_ B d*y(x)

om a2 TUER)=Ey(x)

ikx

For a free particle (U=0) y=A4e

2 2 2 ) 2
Note: — hd w(x) i(A)(z‘k)ze"’“ nk :Px

2m  Jy? T 2m T om W 2m

K.E.

Y

Schrodinger equation
g Kp+Up=Ey

35



In three dimensions: K =

pitpi+p:

2m

3D Schrodinger equation:

_|_
2m\ox* 0y® 0z

il ot 8 o
_|_

Y+UY=Ey

where U and ¢ are functions of (x,y,z).

Define:

o> 05 0
_|_

Vi=—+
ox> 0y 0z

(Laplacian operator)
in Cartesian coordinates

52
—2mV21|)-|-U1|)=E1|)
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In many practical problems, it is convenient to use spherical
coordinates (7, 9, ¢): 4

x=rsin0cos g
y=rsin0sin@

z=rcos0 B e
|
X

=> Schrodinger equation in spherical coordinates:

h—}!

( I i
A1 1 0 ( zaq)) 1 o'y
———— = + 0

dm | r g, (’”W) +2sin 0 00 Sin 00/ sinb @q)z

t - 4

+Up=E

(No need to memorize!)
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